首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   1篇
化学   1篇
晶体学   11篇
力学   1篇
物理学   6篇
  2009年   10篇
  2008年   6篇
  2004年   1篇
  2003年   2篇
排序方式: 共有19条查询结果,搜索用时 46 毫秒
1.
Several empirical rules have been proposed during the past few years to synthesize bulk metallic glasses. But, the real reasons for the improved glass-forming ability of these alloys are still not clear and the ability to design alloy compositions to enable synthesis of larger diameter rods has not improved. The present work conducts a critical analysis of the existing data in terms of the different glass-forming criteria and concludes that the available parameters cannot satisfactorily predict the GFA and explain all the observed data. Reasons for this failure have been suggested.  相似文献   
2.
J.D. Plummer  I. Todd 《Journal of Non》2009,355(6):335-819
The relationships between the elastic moduli, glass forming ability and response to deformation of bulk metallic glasses are investigated. Five bulk metallic glasses are prepared from high purity elements via suction casting. The results confirm that there exists a correlation between energy absorbed to failure during compression testing and the bulk to shear modulus ratio. This finding is developed such that it corresponds only to the elastic component of energy absorption, and that the bulk modulus dominates this. Plastic deformation appears to be favored by a reduced shear modulus, although it shows greater dependence on structural features that are frozen in during the glass transition, and so may well be dependent on the liquid fragility.  相似文献   
3.
A combination of two criteria, which have been recently reported in the literature to predict compositions with high glass-forming ability, has been applied in the present work for the Ni-Ti system. The first criterion is an extension of the topological instability ‘λ criterion’, used here to indicate (and avoid) the composition fields associated with the crystallization of the first phase (solid solution or intermetallic compound) to appear during crystallization. The second, the thermodynamic criterion, is based on the calculation of a parameter (γ∗) that relates the enthalpies of all the competing phases including the amorphous one. A combination of these two criteria for the binary Ni-Ti system indicated the existence of only a narrow composition interval for glass formation. Alloy compositions in this interval were prepared by melt-spinning and the glass-forming ability (GFA) of the as-cast ribbons was evaluated by X-ray diffraction and differential scanning calorimetry. The results indicated that the two criteria are complementary, since compositions with high GFA are expected to have a high γ∗ parameter and also correspond to intervals where the λ parameter is greater than 0.1.  相似文献   
4.
J.B. Qiang  W. Zhang  G.Q. Xie  A. Inoue 《Journal of Non》2008,354(18):2054-2059
The crystallization behavior of melt-spun (Zr65Al7.5Cu27.5)100−xTix (x = 0-15; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed an altered crystallization mode in the vicinity of 3 at.% Ti addition. A metastable icosahedral quasicrystal precipitated at the first crystallization stage of the Ti-bearing metallic glasses, which subsequently transformed to the stable Zr2Cu-type phase in the followed exothermic reaction. The glass-forming abilities (GFAs) of these metallic glasses were assessed by the recognized GFA indicators Trg, ΔTx and γ. BMGs were easily made in the compositions containing 3-7 at.% Ti by means of copper mold casting. The validity of these parameters was clarified using the critical BMG forming diameter evidence.  相似文献   
5.
The crystallization process of mechanically alloyed Fe75Zr25 metallic glasses is investigated by means of both thermo‐magnetization and in situ neutron powder thermo‐diffraction experiments in the temperature range 300–1073 K. It was found that the crystallization takes place in a two‐step process, involving firstly the appearance of metastable Fe and Fe2Zr crystalline phases between 880 K and 980 K, and a subsequent polymorphic transformation into Fe3Zr above 980 K. These findings explain the anomalous magnetization vs. temperature behaviour on heating–cooling cycles.

  相似文献   

6.
弹丸侵彻混凝土的SPH算法   总被引:16,自引:2,他引:16  
给出了弹丸侵彻混凝土的数值计算,其中弹体作为刚体处理并划分成Lagrangian标准有限元网格,而混凝土划分成光滑粒子并经历大应变、高应变率和高压作用。为了描述混凝土的非线性变形及断裂特性,在计算中引入了Holmquist Johnson Cook本构模型及损伤模型。计算结果与实验结果的对比表明,利用光滑粒子流体动力学方法对混凝土材料进行大应变、高应变率的变形计算是有效的,并可避免网格重分或网格消蚀。此外,将光滑粒子流体动力学方法和有限元方法结合可以保持计算过程中材料界面的清晰。  相似文献   
7.
Sila Suer 《Journal of Non》2009,355(6):373-378
The bulk glass forming ability (BGFA) of Ti-Cu based multicomponent alloys has been evaluated via theoretical modeling and computer simulation studies based on a combination of electronic theory of alloys in the pseudopotential approximation and the statistical thermodynamical theory of liquid alloys. The magnitude of atomic ordering energies, calculated by means of the electronic theory of alloys in the pseudopotential approximation, was subsequently used for calculation of the key thermodynamic parameters such as enthalpy, entropy and Gibbs free energy of mixing, viscosity, and critical cooling rate of the binary Ti-Cu and ternary Ti-Cu-X alloys. The potential alloying elements (X) can be divided in two groups defined by their effect on the variation of the negative heat of mixing and their influence on the critical cooling rate. Most of the predicted candidate alloying elements from either XI (Al, Si, Ag) or XII (Co, Ni, Fe, Sn, Be) and/or both groups have already been used successfully for the fabrication of new Ti-Cu based bulk metallic glasses. It was also shown that the critical cooling rate appears to be a more important parameter rather than the change in the negative heat of mixing for the prediction of candidate alloying elements improving BGFA.  相似文献   
8.
H.C. Kou  J. Wang  H. Chang  B. Tang  J.S. Li  R. Hu  L. Zhou 《Journal of Non》2009,355(7):420-2594
The isochronal crystallization kinetics of the Ti40Zr25Ni8Cu9Be18 metallic glass has been investigated by differential scanning calorimetry (DSC). Results indicate that the two crystallization events of this metallic glass cannot be well-described by the classic Johnson-Mehl-Avrami (JMA) kinetic equation. The kinetic equation considering the impingement effect has been found more applicable for describing the isochronal crystallization kinetics of this amorphous alloy. Accurate values of kinetic parameters were determined by fitting the theoretical DSC data to experimental curves. The kinetic parameters change in different crystallization stages and show strong heating rate dependence. Reasons of the deviation from the JMA kinetics for the isochronal crystallization of Ti40Zr25Ni8Cu9Be18 metallic glass were discussed.  相似文献   
9.
Bulk metallic glasses (BMGs) have a variety of excellent properties compared with the majority of conventional crystalline alloys. However, they exhibit limited global plasticity at room temperature because of shear banding. Several methods have been proposed to improve the limited ductility of BMG; one method is the homogeneous distribution of crystalline particles. However, our understanding of the interaction between the crystalline particles and shear bands (SB) is not sufficient. Here, we performed molecular dynamics (MD) simulations of mode II deformation of a notched BMG plate and BMG plates containing one nano-crystalline particle ahead of the notch bottom. To compare the effect of crystalline particle size on the resistance to SB propagation, we used the J-integral. By comparing J-R curves and the deformation behavior of the BMG plates with and without nano-crystalline particles, we found that the resistance to shear banding is efficiently improved by introducing crystalline particles with sufficient size, compared to the SB width.  相似文献   
10.
We propose expressions for the estimation of the isenthalpic temperature T 0 (T 0 = αT m , α is a semi-empirical parameter and 0 ⩽ α < 1, T m is the solidus temperature) and the Kauzmann temperature T k (T k = T m exp(α−1)) for glass forming alloys. It is found that T k estimated by T k = T m exp(α−1) is in agreement with that directly calculated from the heat capacity data, indicating that T k = T m exp(α − 1) can be used to estimate T k of glass forming alloys. T 0 estimated by T 0 = αT m , on the other hand, widely deviates from that of directly calculated from the heat capacity data. This suggests that the enthalpy difference of the under-cooled liquid and the crystal might be a nonlinear function of the temperature below T k . Moreover, the Gibbs free energy difference ΔG is not sensitive to the deviation of α.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号